Discriminative Local Sparse Representations for Robust Face Recognition
نویسندگان
چکیده
A key recent advance in face recognition models a test face image as a sparse linear combination of a set of training face images. The resulting sparse representations have been shown to possess robustness against a variety of distortions like random pixel corruption, occlusion and disguise. This approach however makes the restrictive (in many scenarios) assumption that test faces must be perfectly aligned (or registered) to the training data prior to classification. In this paper, we propose a simple yet robust local block-based sparsity model, using adaptively-constructed dictionaries from local features in the training data, to overcome this misalignment problem. Our approach is inspired by human perception: we analyze a series of local discriminative features and combine them to arrive at the final classification decision. We propose a probabilistic graphical model framework to explicitly mine the conditional dependencies between these distinct sparse local features. In particular, we learn discriminative graphs on sparse representations obtained from distinct local slices of a face. Conditional correlations between these sparse features are first discovered (in the training phase), and subsequently exploited to bring about significant improvements in recognition rates. Experimental results obtained on benchmark face databases demonstrate the effectiveness of the proposed algorithms in the presence of multiple registration errors (such as translation, rotation, and scaling) as well as under variations of pose and illumination.
منابع مشابه
Face Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملRobust face recognition via low-rank sparse representation-based classification
Face recognition has attracted great interest due to its importance in many real-world applications. In this paper, we present a novel low-rank sparse representation-based classification (LRSRC) method for robust face recognition. Given a set of test samples, LRSRC seeks the lowest-rank and sparsest representation matrix over all training samples. Since low-rank model can reveal the subspace st...
متن کاملJoint and collaborative representation with local adaptive convolution feature for face recognition with single sample per person
With the aid of a universal facial variation dictionary, sparse representation based classifier (SRC) has been naturally extended for face recognition (FR) with single sample per person (SSPP) and achieved promising performance. However, extracting discriminative facial features and building powerful representation framework for classifying query face images are still the bottlenecks of improvi...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملAn MKD-SRC Approach for Face Recognition from Partial Image
Face recognition has received a great deal of attention from the scientific and industrial communities over the past several decades owing to its wide range of applications in information security and access control, law enforce, surveillance and more generally image understanding. A general partial face recognition method based on Multi-Key point Descriptors (MKD) that does not require face al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1111.1947 شماره
صفحات -
تاریخ انتشار 2011